Defocused PSF-fitting Photometry

RoPACS Network Workshop - May 2010

Hannu Parviainen

Instituto de Astrofísica de Canarias

11.05.2010

Hannu Parviainen Defocused PSF-fitting Photometry

Introduction

- The light curve
- Defocused PSF

2 Observations

Observations

③ PSF fitting Photometry

- PSF model 1
- PSF model 2
- Fitting

< ∃ →

< 🗇

ж

-

< 🗇 🕨

3

< ∃⇒

< ∃ >

・ロト・ (日)・ (日)・ (日)・ (日)・

PSF

・ロト・ (日)・ (日)・ (日)・ (日)・

Observations

★ Ξ → < Ξ →</p>

Observations

GJ436(b)

- Bright (6.3 in H)
- Distance 10.2 pc

Observations - 13.03.2010

- H filter
- 1.5 s. integration
- Defocused to \approx 8 pix ring
- 200 images / cube
- W-setup (4.6' fow)
- 40 cubes \rightarrow 8000 images

Challenges (problems)

- No comparison star
- Misbehaving dome \rightarrow vignetting

Defocusing

- Reduces the noise due to pixel-to-pixel variation
- Smooths out the noise due to sky variation
- Allows for longer integration of bright targets

프 🖌 🛪 프 🕨

PSF Fitting Photometry

글 🕨 🔺 글 🕨

Why?

What

- Model the shape of the psf
- Fit the model to the data
- Calculate flux from the model

Why

- PSF spread over a large number of pixels
- Vignetted part can be excluded
 - But only if the effects due to the vignetting are confined
 - Less pixels to fit \rightarrow increases scatter

B b

PSF model

PSF model

- Center (x,y)
- n concentric rings
 - Amplitude
 - Width
 - Radius

Quartic polynomial

$$f_i(r) = a + 4a\left(r^4/4w - r^2/2w\right)$$

Rings

- Gaussians
 - Evaluation of exp is slow!
 - Infinite support
- Quartic polynomials
 - Only multiplications
 - Less elegant but fast
 - Clipping \rightarrow finite support

PSF model

PSF model

- Center (*x*, *y*)
- n concentric rings
 - Amplitude
 - Width
 - Radius

Rings

- Gaussians
 - Evaluation of exp is slow!
 - Infinite support
- Quartic polynomials
 - Only multiplications
 - Less elegant but fast
 - Clipping \rightarrow finite support

Quartic polynomial

$$f_i(r) = a + 4a(r^4/4w - r^2/2w)$$

(注) → (注) →

PSF model

PSF model

$$\mathsf{PSF}(r) = \sum_{i}^{n} \mathsf{f}_{i}(r)$$

Flux

$$F(r) = 2\pi \int r PSF(r) dr$$

$$F(r) = 2\pi \int r \sum_{i} f_{i}(r) dr$$

$$F(r) = 2\pi \sum_{i}^{n} \int r f_{i}(r) dr$$

Flux integration

- Flux is a sum of polynomials
- Fast, minimizes numerical errors

< ∃⇒

Fitting

Differential evolution (DE)

- Global optimization algorithm
- Fast, robust, easy to implement
- Price, Storn, and Lampinen (2005)

Implementation

- Fortran, Python, NumPy, and PyFITS
- Trivial parallelization with MPI

Implementation

- Iterative optimization of parameter space bounds
- Increases stability

Performance

• 0.2 - 0.8 sec/image for the 3 ring model (11 free parameters)

Other

• Calculates centers of defocused psf's \rightarrow aperture photometry

★ Ξ ► < Ξ ►</p>

Results

イロン イ団と イヨン イヨン

-2

PSF fitting example

Final light curve

3

글 🕨 🖌 글 🕨

Thank you!

₹ Ξ > < Ξ >

P.

-2