#### Maxim Kuznetsov ESR MAO (UA)

Purpose: develop and use theoretical models of cool dwarfs spectra and atmospheres to better constrain ultra cool objects properties and improve understanding of this objects



#### I'd like tell you my history in science

#### 2-m telescope on peak Terskol



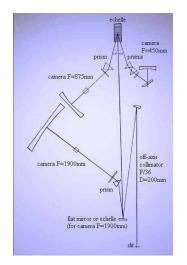


- Ritchey-Chretien-Coude Telescope. It was produced by Carl Zeiss Jena (Germany).
- The main parameters of the telescope Zeiss 2000 to Terskol.

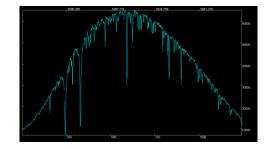
Primary mirror:

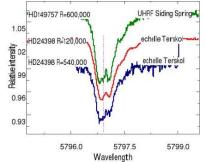
- 2000 mm clear opening
- Focal length 5600 mm

**Ritchey-Chrétien:** 


- Equivalent focal length of 16000 mm
  The field, free of vignetting, D = 330 mm (1.18 °)

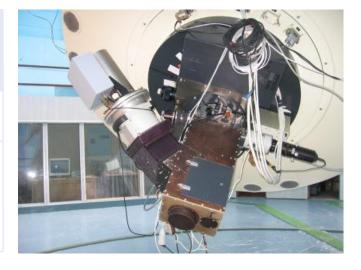

System kude (standard):

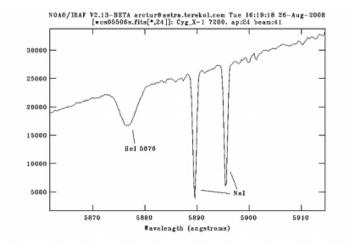

- Equivalent focal length of 72000 mm The field free of vignetting 5 '

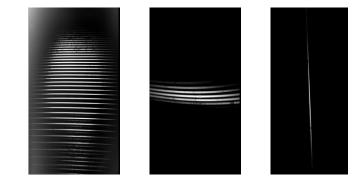

#### Coude Echelle Spectrograph MAESTRO

- R=45000 and R=120000
- spectral range
   3600-10000 Å
- Limiting magnitude 9-10 mag
   S/N ~100





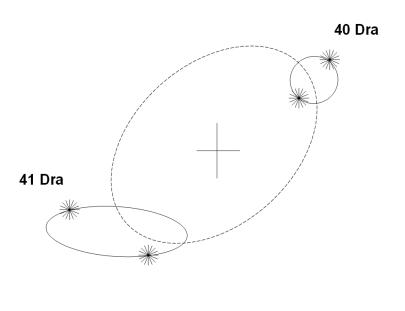




#### Multi Mode Cassegrain Spectrometer CMMS

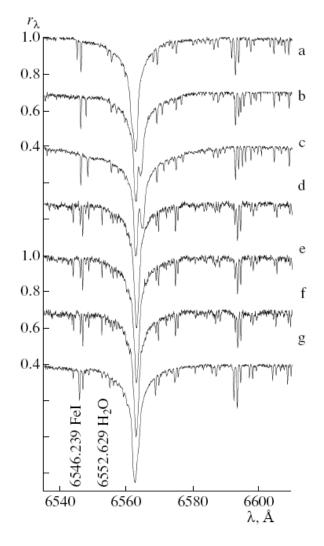
| Modes                                            | echelle | Quasi echelle | classic 8° | classic 4° |
|--------------------------------------------------|---------|---------------|------------|------------|
| Resolution                                       | 13500   | 3200          | 1200       | 600        |
| Limiting<br>Mag.<br>S/N~10<br>Exp=1 <sup>h</sup> | ~12.5   | ~14.5         | ~15        | ~16        |

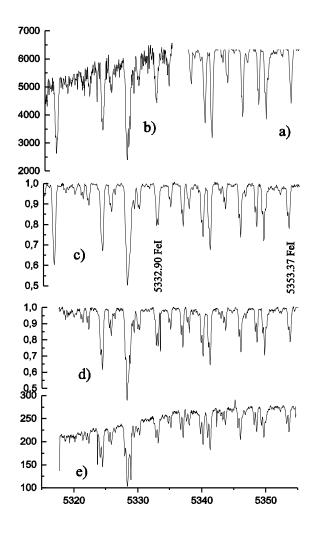







R=13500 R=3200 R=1200


## Orbits characteristic of 40 Dra and 41 Dra and parameters of their components


|                        | 40 Dra | 41 Dra |  |  |
|------------------------|--------|--------|--|--|
| Parallax (mas)         | 0.023  | 0.023  |  |  |
| e                      | 0.380  | 0.9754 |  |  |
| P (day) period         | 10.53  | 1247.2 |  |  |
| Sp. (A)                | F5V    | F7V    |  |  |
| Sp. (B)                | F5V    | F7V    |  |  |
| M(A) (M <sub>☉</sub> ) | 1.32   | 1.48   |  |  |
| M(B) (M <sub>☉</sub> ) | 1.20   | 1.40   |  |  |
| lg g (A)               | 4.17   | 4.08   |  |  |
| lg g (B)               | 4.20   | 4.26   |  |  |
| Teff(A), K             | 6420   | 6575   |  |  |
| Teff(B), K             | 6300   | 6600   |  |  |

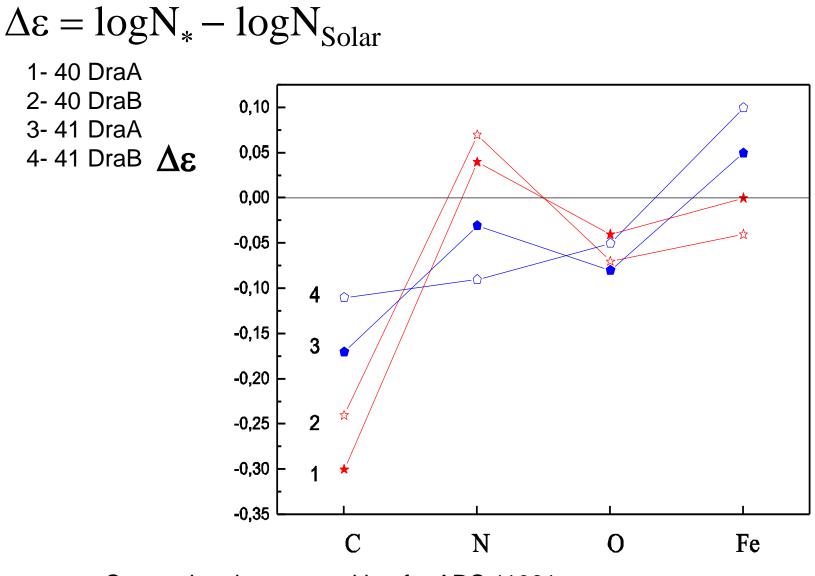


ADS 11061

### Observational data for spectroscopic binary 40 Dra and 41 Dra for different phase






40 Dra

41 Dra

#### Model parameters for components of selected binary stars Sun and Procion A

| Star       | T <sub>eff</sub> , K | log g | v <sub>t</sub> , km/s | Concentration of elements $(\log N_0)$ |      |      |      |
|------------|----------------------|-------|-----------------------|----------------------------------------|------|------|------|
|            |                      |       |                       | С                                      | Ν    | 0    | Fe   |
| Sun        | 5770                 | 4.4   | 1                     | 8.39                                   | 7.78 | 8.66 | 7.45 |
| Procion A  | 6530                 | 3.96  | 2.2                   | 8.73                                   | 8.18 | 8.86 | 7.40 |
| 41 Dra (A) | 6575                 | 4.08  | 2.15                  | 8.39                                   | 8.12 | 8.77 | 7.50 |
| 41 Dra (B) | 6600                 | 4.26  | 1.70                  | 8.45                                   | 8.15 | 8.74 | 7.46 |
| 40 Dra (A) | 6420                 | 4.17  | 2.6                   | 8.52                                   | 8.05 | 8.73 | 7.55 |
| 40 Dra (B) | 6300                 | 4.20  | 2.6                   | 8.58                                   | 7.99 | 8.76 | 7.60 |
|            |                      |       |                       |                                        |      |      |      |

Age - 2.5\*10 <sup>9</sup> yars



Comparing the composition for ADS 11061

# Understanding planet host stars from spectroscopy

MAO will develop and use theoretical models to better constrain cool star properties and improve understanding of cool star atmospheres.

- Develop cool star atmospheric models.
- Measure spectroscopy of cool star hosts over a broad/useful spectral range.
- Fit cool star properties with models, and assess the implications for orbiting planets.

We initiated the scientific program for 2-m Terskole telescope. The main aim of the project is the investigations atmospheric temperature and composition, stellar mass and radius, and the system age of planet host stars.

If you interesting in obtaining observations on 2-m telescope you cold join us.